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Nonlocal effects in the conserved Kardar-Parisi-Zhang equation
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By using the dynamic renormalization group approach, we analyze a nonlocal conserved Kardar-Parisi-
Zhang equation with spatially correlated conservative noise in order to study the effect of the long-range nature
of interactions coupled with spatially correlated noise on the dynamics of a volume conserving surface. The
roughness of the surface depends on both the long-range interaction strength and the spatial correlation
parameter. The surface becomes less rough by the long-range interaction, while it becomes more rough by the
spatial correlation of noise. We also study the nonlocal conserved Kardar-Parisi-Zhang equation with spatially
correlated nonconservative noise.

PACS numbes): 05.40-a, 68.35.Fx, 05.70.Ln, 64.60.Ht

For the past decade the kinetic roughening of surfaces has (a1, D) e(r' A~ V2 r—r’ |27 d5(t—t"), 2
attracted much intere$tl]. Various kinetic growth models
and related continuum growth equations have been investivhered is the substrate dimension. Spatial correlation is in-
gated numerically and analytically by measuring the scalingroduced through the noise spectrik, ), defined as
exponents that characterize the asymptotic behavior of the
surface roughness on the large length scale and in a long (nc(k,w))=0,
time limit. The most well known continuum equation is the 3)
Kardar-Parisi-Zhan¢KPZ) equation 2] which has become a (ne(k,w) (k' 0"))=2D(k) 8% k+k") S(w+ '),
paradigm for the kinetic roughening phenomena. Neverthe-
less, there is poor agreement between the KPZ theory and thvéhere 7.(k, ) is the Fourier transform of noisg(r,t). A
experimentg3]. The discrepancy between the KPZ theoryform of D(k) can be written adD (k) =(Dy+ Dk 27)k?,
and the experiments has spurred considerable theoretical ashere o is an exponent characterizing the decay of spatial
tivities involving modifications of the KPZ theory, such as a correlations. The limiting case=0 gives the uncorrelated
conserved KPECKPZ) equation[4,5] as well as correlated conservative noise which is a white noise of zero mean with
[6], non-Gaussiafi7], and quenched noigd,9]. However, ({7.(k,0)7.(k’,'))=2D V2?64 (k+k')8(w+w').  The
most of these studies are related to the short-range nature kérnel 9(r) has a short-range paxt,6°(r) and a long-range
interaction in nonlinear terms. part r*~¢ in Fourier spaced(k)=Ao+\ k7. Since the

Recently, Mukherji and Bhattacharjee proposed a pheright-hand side of Eq(1) can be written as the divergence of
nomenological equation in the presence of long-range intera current, including the noise term, the total volume under
actions, the nonlocal KRRIKPZ) equation which has a non- the surface is conserved. This is the feature of conservative
linear term with the long-range interaction as coupling thenoise.
gradients at two different pointgl0]. The nonlocal con- The surface widthw/(L,t) can be described by the dy-
served KPZNCKPZ) equation with the same kind of long- namical scaling formw(L,t)=L*f(t/L?), wherel, a, Z
range interaction was also studigtl]. Using the dynamic andf are the system size of the substrate, the roughness
renormalization-grougRG) approach, it was found that the exponent, the dynamic exponent, and the scaling function,
roughness of the surface changes and several distinct phasespectively. The scaling functiof(x) approaches a con-
appear. Chattopadhyay studied the generalization of thstant forx>1, andf(x)~x®? for x<1. In the absence of
NKPZ equation with spatially correlated noige2]. The cor-  nonlinearity (\ o= \,=0), Eq.(1) becomes a linear equation
related noise coupled with the long-range interactions prowith spatially correlated noise evolving with the conservative
duces different phases in different regimes from the phasesurface diffusion, where the roughness exponenis (2
formed by the NKPZ equation with white noise. Here we —d-+2¢)/2 and the dynamic exponeatis four which can
extend the NCKPZ equatiofil1] to the case of spatially be obtained by a dimensional analysis. The linear equation
correlated noise. with the spatially correlated conservative noise produces a

The continuum equation for the coarse-grained heightoughness exponent as a function of noise correlation param-
variableh(r,t), which describes the surface as a function ofetero. Forx ,=0 and\,#0, Eq.(1) becomes the conserved

coordinater and timet, is given by KPZ equation with spatially correlated conserved noise,
Sh(r 1) 1 which was studied by Familgt al. [13]. For this local con-
L — —KVAh(r,t)+ (1, 1) — _sz dr' 9(r') served growth equation, the dynamic RG calculation shows
at 2 that a=(2—d+20)/3 and z=(10+d—20)/3 for d<2
XVh(r+r',t)-Vh(r—r',t), 1) +20. In the limiting case ofo=0 and\ ,=0, Eq.(1) cor-

responds to that of Sun, Guo, and Gradt which givesa
where the parametés is a constant. The conservative noise =(2—d)/3 andz=(10+d)/3. In this paper, we study the
7¢(r,t) has a power law correlation of the form effects of the long-range interaction of nonlinearity ,(
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#0) and spatially correlated noise on the dynamics of a dU, U,

volume-conserving interface. We show that the spatially cor- 4/ ~ o [27d+2p+3()], 9
related noise in the presence of the long-range interaction of ‘

nonlinearity produces new fixed points and the exponents du U

depend on both parametenf the long-range interaction and b7 = L2[2—d+2p+20+3(-)], (10)

the spatial correlation parameterof noise. The long-range ds 2
interaction of nonlinearity makes the surface less rough thag,yere the centered dot is given by
that of the short-range interaction, while the spatial correla-
tion of noise makes it more rough.
Under the change of scale, the parameters in(BEgqnake
the changes K—b” *K, X\o—b*"*7 %\, and \,
—p?te=4%r)\ ' The noise strength changes bR,
—b?72¢7972D and D,—b? 22 972%29p _ Thus, when
o=0, the critical dimensions aré,=2+2p(p>0) andd,
=2(p<0). If ¢>0, the critical dimensions are given by
dc=2+2p+20(p>0) andd.=2+20(p<0) for any\,,. P
Thus, whenp>0 ando>0, if d<d.=2+2p+20, a new Now let us consider the following four sets of effective
fixed point depending op ando is expected. Id=2+2p  coupling constants: Weo,U o), (Uoe:U,s)s (UoosUos),
+20, the nonlocality of the nonlinear term and the corre-5nq (U | U, ). From the RG recursion. relations, we find
lated noise become irrelevant and the surface is controlled byyia| fixed ppoints for the four sets of effective coupling con-
the linear equation. _ _ stants. Unlike the case of KPZ and NKPZ equation with
Following the dynamic RG procegufé]v Integrating out  correlated nois¢6,12], there is no off-axis fixed point. It is
fast modes in the momentum shell” A<|k|<A and per-  pecause the equation for the ratio of effective coupling con-
forming the rescalings—br, t—b’t, andh—b*h, we de-  gtants in each space rules out the existence of any off-axis
rive the foIIowmg ro_vv equations for the coefficients, in a fixed point[e.g.,d(U e/ U ,0)/d/=— p(Ugo/U ,0) .
one-loop approximation: In (Ugo,U,0) plane, there exist two axial fixed points.
When p=0, the fixed point, U302=4d(2—d)/3(4— d)

1
()= g {(d=A[(Ug+UG,) +(1+277)(UodU 0

+Ug,U,0) +27 (U2 +U3 ) 1= 3p[ (UgU 0
+Ug,U,,)+2 P(U2+U2 )]—20[ U7,
)

+(14+277)Ug,U,,+27PU (11)

dK _ 1,4 BPQ) 9(2)9(1) which is obtained by settingUp/d/ =0, is stable ford
ds K3 < 2. Using Eqgs(4),(7), and the relatioz+ o= 4, the rough-
ness and the dynamic exponents are obtained as
d—4+3f(1)+g(1)
X 2d } (4) a=(2-d)/3, z=(10+d)/3. (12)
4D(k) At physical dimensiord=2, the surface width is logarith-
mically rough. These results at this fixed point are in agree-
a7~ Pk[z—2a-d-2-g(k)], ) ment with those of Sun, Guo, and Graat. Whenp>0, the
effective nonlinearityU ,; is dominant oveilJy,. Thus, the
« phase in spacelqyg, U o), except forJ ,,=0, is determined
a7 - M zta—a+x), (6) by the long-rangex, term in Eq.(1). By settingdU ,,/d/

=0, the fixed pointU*¢=4d(2—d+2p)/3(4—d+3p)2"°
wherex=0 or p, respectively. Heref (q)=d In 9(k)/oKl—q is obtained. This fixed point is stable fdx2+2p and the

and g(q) = In D(K)/oK—q- Since the diagrams contributing €XPonents are given by
to D(k) have prefactors proportional td¢, they correspond

to higher derivatives in the original noise spectrum. Note tha
two scaling relationg+ a«=4 andz+ a=4- p, which result
from the nonrenormalization of, and\ , in Eq. (6), are the
results of a one-loop approximatigmd4].

To obtain the RG recursion relations, we define
the dimensionless effective coupling constartljf<y
=Bgy(\iD,)/K?, wherex=0 or p andy=0 or o. HereBy
=S4/(27)Y, Sy being the surface area of dadimensional
unit sphere. By using these dimensionless effective couplin

constants, we find that the RG recursion relations are as fol

lows:

dUOO UOO

o7 - 2 [27d+3()], (7
dUOa’_ UOo’
a7 —7[2—d+20'+3()], (8)

a=(2—d—p)/3, z=(10+d—2p)/3. (13

t

These exponents are determined by HEgs.and (9) with z
+a=4-p and both exponents decrease by the parameter
of the long-range interaction. H<2—p, the surface is the
rough phase with a positive roughness exponent, white if
>2—p, it is the smooth phase with a negative value of the
roughness exponent. In particular,cat 2 the nonzerdJ o
term with p>0 can make the surface less rough than the
tgarithmically rough phase of the case0. In contrast, for
p<<0, the fixed pointUj;O2 is irrelevant on the grounds that
Ugois dominant ovelJ 0. U%¢ is stable ford<2+ 2p, only

if Ugo=0. The results in this spacéJg,,U o) are the same
of those of Ref[11].

In plane Uo,,U,,), whenp=0, the surface is governed
by the fixed point,U%2=4d(2—d+20)/3(4—d+20), if
d<2+2¢ ando>0. At this fixed point, the exponents are
given by
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a=(2—d+20)/3, z=(d+10-20)/3, (14

from Egs.(4) and(8) with the relationz+ a=4. Unlike the
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We have also studied Ed1l) with spatially correlated
nonconservative noise instead of a spatially correlated con-
servative one. In the NCKPZ equation with spatially corre-

case of Eq(13), Eq. (14) shows that due to the presence of lated nonconservative noise, the average height is not con-
spatial correlation in noise the roughness exponent increaseserved [13]. In the spatially correlated nonconservative
that is, the surface becomes more rough than that in the caswise, formD(k) in Eq. (3) can be written aD(k)=D,

of white noise. This is different from the role @f which
makes the surface less rough. Wher 0, the fixed point
U3Z crosses over into the fixed poitt*Z2=4d(2—d+2p
+20)/3(4—d+3p+20)2™ P, which is stable ford<2

+2p+20. At this fixed point, the dynamic and the rough-

ness exponents are obtained from E@g.and (10) with z
+a=4—p as
a=(2—d—p+20)/3, z=(10+d—-2p—20)/3.
(19

When d<2—p+ 20, the surface is rough with a positive
roughness exponent, while d>2—p+2¢, it is smooth
with a negative one. This is the same as that of @¢) if
d—d+20. Whenp<O0, the fixed poinwjf becomes irrel-
evant and the fixed pointi%? is relevant, except foky=0.

Note that in Egs.(13), (14), and (15 both the correlated

+D k2. There are four sets of axial fixed points and the
results of the spatially correlated nonconservative case are
the same as those of the spatially correlated conservative
case if the dimensionality is replaced by-d—2 in Egs.
(7)-(10) and symbol is replaced by

1
()= 2g{(d=6)[(Ugg+Ug,) +(1+277)(UodU 0

+Ug,U ) +27P(U2+ U2 )]=3p[(UoU 0
+Ug,U,,) +27 (U2 +U5 ) ]—20[ U7,
+(1+277)Ug,U,,,+27PU2 1} (16)

As the case of the spatially correlated conservative noise, for
any finite p and o, the correlated fixed points are stable if

noise and the long-range interaction of the CKPZ nonlineard<dc.

ity decrease the value of the dynamical exponent.
In plane Ugg,Ug,), the behavior of the RG flows is the

In conclusion, we have studied the nonlocal conserved
KPZ equation with spatially correlated conservative noise

same as the one for the CKPZ equation with spatially corre@nd nonconservative noise by using the dynamic RG ap-

lated noise studied by Familgt al. [13]. The fixed point
U%Z is stable only ar=0. Foro>0, it crosses over into the
correlated fixed pointU%2, which is stable ford<2+ 20

o !

At this correlated fixed point, the exponents are given by Eq

(14) which is valid if o>0. This is different from the case of

correlated noise in the KPZ equation where a transition fro

uncorrelated to correlated behavior occurs at a finite

In plane U ,,U,,), for c=0 the surface is governed by
the fixed pointU*¢. If o>0, the fixed pointU*Z becomes
unstable and it crosses over into the fixed pdumf This
fixed point is stable fod<d+2p+ 20, even thoughp<O0.
At this fixed point the exponent is given by Ed.5).

proach. In both cases, the long-ranged nature of interactions
coupled with spatially correlated noise produces new fixed

points at which we obtained the roughness and the dynamic
exponents as a function of the parameter of long-range inter-
actionsp, spatial correlation parameter, and the dimen-

msionality d. The nonlocal\ , term with positivep makes the

surface less rough than in the case\pf= 0, while the spatial
correlation of noise makes it more rough.
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