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Nonlocal effects in the conserved Kardar-Parisi-Zhang equation

Youngkyun Jung and In-mook Kim
Department of Physics, Korea University, Seoul 136-701, Korea

~Received 4 April 2000!

By using the dynamic renormalization group approach, we analyze a nonlocal conserved Kardar-Parisi-
Zhang equation with spatially correlated conservative noise in order to study the effect of the long-range nature
of interactions coupled with spatially correlated noise on the dynamics of a volume conserving surface. The
roughness of the surface depends on both the long-range interaction strength and the spatial correlation
parameter. The surface becomes less rough by the long-range interaction, while it becomes more rough by the
spatial correlation of noise. We also study the nonlocal conserved Kardar-Parisi-Zhang equation with spatially
correlated nonconservative noise.

PACS number~s!: 05.40.2a, 68.35.Fx, 05.70.Ln, 64.60.Ht
h

s
lin
th

lo
e

h
d
ry
l
a

re

he
te
-
th

-

e
a
th

ro
s
e

gh
o

se

in-

tial

ith

of
der
tive

-

ess
ion,
-
f
n
ive

tion
s a
am-
d
se,

ws
For the past decade the kinetic roughening of surfaces
attracted much interest@1#. Various kinetic growth models
and related continuum growth equations have been inve
gated numerically and analytically by measuring the sca
exponents that characterize the asymptotic behavior of
surface roughness on the large length scale and in a
time limit. The most well known continuum equation is th
Kardar-Parisi-Zhang~KPZ! equation@2# which has become a
paradigm for the kinetic roughening phenomena. Nevert
less, there is poor agreement between the KPZ theory an
experiments@3#. The discrepancy between the KPZ theo
and the experiments has spurred considerable theoretica
tivities involving modifications of the KPZ theory, such as
conserved KPZ~CKPZ! equation@4,5# as well as correlated
@6#, non-Gaussian@7#, and quenched noise@8,9#. However,
most of these studies are related to the short-range natu
interaction in nonlinear terms.

Recently, Mukherji and Bhattacharjee proposed a p
nomenological equation in the presence of long-range in
actions, the nonlocal KPZ~NKPZ! equation which has a non
linear term with the long-range interaction as coupling
gradients at two different points@10#. The nonlocal con-
served KPZ~NCKPZ! equation with the same kind of long
range interaction was also studied@11#. Using the dynamic
renormalization-group~RG! approach, it was found that th
roughness of the surface changes and several distinct ph
appear. Chattopadhyay studied the generalization of
NKPZ equation with spatially correlated noise@12#. The cor-
related noise coupled with the long-range interactions p
duces different phases in different regimes from the pha
formed by the NKPZ equation with white noise. Here w
extend the NCKPZ equation@11# to the case of spatially
correlated noise.

The continuum equation for the coarse-grained hei
variableh(r ,t), which describes the surface as a function
coordinater and timet, is given by

]h~r ,t !

]t
52K“

4h~r ,t !1hc~r ,t !2
1

2
“

2E dr 8q~r 8!

3“h~r1r 8,t !•“h~r2r 8,t !, ~1!

where the parameterK is a constant. The conservative noi
hc(r ,t) has a power law correlation of the form
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^hc~r ,t !hc~r 8,t8!&;“

2ur 2r 8u2s2dd~ t2t8!, ~2!

whered is the substrate dimension. Spatial correlation is
troduced through the noise spectrumD(k,v), defined as

^hc~k,v!&50,
~3!

^hc~k,v!hc~k8,v8!&52D~k!dd~k1k8!d~v1v8!,

wherehc(k,v) is the Fourier transform of noisehc(r ,t). A
form of D(k) can be written asD(k)5(D01Dsk22s)k2,
wheres is an exponent characterizing the decay of spa
correlations. The limiting cases50 gives the uncorrelated
conservative noise which is a white noise of zero mean w
^hc(k,v)hc(k8,v8)&52D0“

2dd(k1k8)d(v1v8). The
kernelq(r ) has a short-range partl0dd(r ) and a long-range
part r r2d in Fourier spaceq(k)5l01lrk2r. Since the
right-hand side of Eq.~1! can be written as the divergence
a current, including the noise term, the total volume un
the surface is conserved. This is the feature of conserva
noise.

The surface widthW(L,t) can be described by the dy
namical scaling formW(L,t)5La f (t/Lz), where L, a, z,
and f are the system size of the substrate, the roughn
exponent, the dynamic exponent, and the scaling funct
respectively. The scaling functionf (x) approaches a con
stant forx@1, and f (x);xa/z for x!1. In the absence o
nonlinearity (l05lr50), Eq.~1! becomes a linear equatio
with spatially correlated noise evolving with the conservat
surface diffusion, where the roughness exponenta is (2
2d12s)/2 and the dynamic exponentz is four which can
be obtained by a dimensional analysis. The linear equa
with the spatially correlated conservative noise produce
roughness exponent as a function of noise correlation par
eters. Forlr50 andl0Þ0, Eq.~1! becomes the conserve
KPZ equation with spatially correlated conserved noi
which was studied by Familyet al. @13#. For this local con-
served growth equation, the dynamic RG calculation sho
that a5(22d12s)/3 and z5(101d22s)/3 for d,2
12s. In the limiting case ofs50 andlr50, Eq. ~1! cor-
responds to that of Sun, Guo, and Grant@4# which givesa
5(22d)/3 and z5(101d)/3. In this paper, we study the
effects of the long-range interaction of nonlinearity (lr
2949 ©2000 The American Physical Society
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Þ0) and spatially correlated noise on the dynamics o
volume-conserving interface. We show that the spatially c
related noise in the presence of the long-range interactio
nonlinearity produces new fixed points and the expone
depend on both parameterr of the long-range interaction an
the spatial correlation parameters of noise. The long-range
interaction of nonlinearity makes the surface less rough t
that of the short-range interaction, while the spatial corre
tion of noise makes it more rough.

Under the change of scale, the parameters in Eq.~1! make
the changes K→bz24K, l0→bz1a24l0, and lr

→bz1a241rlr . The noise strength changes byD0
→bz22a2d22D0 and Ds→bz22a2d2212sDs . Thus, when
s50, the critical dimensions aredc5212r(r.0) anddc
52(r,0). If s.0, the critical dimensions are given b
dc5212r12s(r.0) anddc5212s(r,0) for any lr .
Thus, whenr.0 ands.0, if d,dc5212r12s, a new
fixed point depending onr ands is expected. Ifd>212r
12s, the nonlocality of the nonlinear term and the corr
lated noise become irrelevant and the surface is controlle
the linear equation.

Following the dynamic RG procedure@6#, integrating out
fast modes in the momentum shelle2l L<uku<L and per-
forming the rescalingsr→br, t→bzt, andh→bah, we de-
rive the following flow equations for the coefficients, in
one-loop approximation:

dK

dl
5KH z242

BdD~1!

K3
q~2!q~1!

3
d2413 f ~1!1g~1!

4d J , ~4!

dD~k!

dl
5D~k!@z22a2d222g~k!#, ~5!

dlx

dl
5lx~z1a241x!, ~6!

where x50 or r, respectively. Heref (q)5] ln q(k)/]kuk5q
and g(q)5] ln D(k)/]kuk5q . Since the diagrams contributin
to D(k) have prefactors proportional tok4, they correspond
to higher derivatives in the original noise spectrum. Note t
two scaling relationsz1a54 andz1a542r, which result
from the nonrenormalization ofl0 andlr in Eq. ~6!, are the
results of a one-loop approximation@14#.

To obtain the RG recursion relations, we defi
the dimensionless effective coupling constantUxy

2

5Bd(lx
2Dy)/K

3, wherex50 or r and y50 or s. HereBd

5Sd /(2p)d, Sd being the surface area of ad-dimensional
unit sphere. By using these dimensionless effective coup
constants, we find that the RG recursion relations are as
lows:

dU00

dl
5

U00

2
@22d13~• !#, ~7!

dU0s

dl
5

U0s

2
@22d12s13~• !#, ~8!
a
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dUr0

dl
5

Ur0

2
@22d12r13~• !#, ~9!

dUrs

dl
5

Urs

2
@22d12r12s13~• !#, ~10!

where the centered dot is given by

~• !5
1

4d
$~d24!@~U00

2 1U0s
2 !1~1122r!~U00Ur0

1U0sUrs!122r~Ur0
2 1Urs

2 !#23r@~U00Ur0

1U0sUrs!122r~Ur0
2 1Urs

2 !#22s@U0s
2

1~1122r!U0sUrs122rUrs
2 #%. ~11!

Now let us consider the following four sets of effectiv
coupling constants: (U00,Ur0), (U0s ,Urs), (U00,U0s),
and (Ur0 ,Urs). From the RG recursion relations, we fin
axial fixed points for the four sets of effective coupling co
stants. Unlike the case of KPZ and NKPZ equation w
correlated noise@6,12#, there is no off-axis fixed point. It is
because the equation for the ratio of effective coupling c
stants in each space rules out the existence of any off-
fixed point @e.g.,d(U00/Ur0)/dl 52r(U00/Ur0)#.

In (U00,Ur0) plane, there exist two axial fixed points
When r50, the fixed point, U00*

254d(22d)/3(42d)
which is obtained by settingdU00/dl 50, is stable ford
,2. Using Eqs.~4!,~7!, and the relationz1a54, the rough-
ness and the dynamic exponents are obtained as

a5~22d!/3, z5~101d!/3. ~12!

At physical dimensiond52, the surface width is logarith
mically rough. These results at this fixed point are in agr
ment with those of Sun, Guo, and Grant@4#. Whenr.0, the
effective nonlinearityUr0 is dominant overU00. Thus, the
phase in space (U00, Ur0!, except forUr050, is determined
by the long-rangelr term in Eq.~1!. By settingdUr0 /dl

50, the fixed pointUr0*
254d(22d12r)/3(42d13r)22r

is obtained. This fixed point is stable ford,212r and the
exponents are given by

a5~22d2r!/3, z5~101d22r!/3. ~13!

These exponents are determined by Eqs.~4! and ~9! with z
1a542r and both exponents decrease by the parametr
of the long-range interaction. Ifd,22r, the surface is the
rough phase with a positive roughness exponent, whiled
.22r, it is the smooth phase with a negative value of t
roughness exponent. In particular, atd52 the nonzeroUr0
term with r.0 can make the surface less rough than
logarithmically rough phase of the caser50. In contrast, for
r,0, the fixed pointUr0*

2 is irrelevant on the grounds tha
U00 is dominant overUr0 . Ur0*

2 is stable ford,212r, only
if U0050. The results in this space (U00,Ur0) are the same
of those of Ref.@11#.

In plane (U0s ,Urs), whenr50, the surface is governe
by the fixed point,U0s*

254d(22d12s)/3(42d12s), if
d,212s ands.0. At this fixed point, the exponents ar
given by
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a5~22d12s!/3, z5~d11022s!/3, ~14!

from Eqs.~4! and ~8! with the relationz1a54. Unlike the
case of Eq.~13!, Eq. ~14! shows that due to the presence
spatial correlation in noise the roughness exponent increa
that is, the surface becomes more rough than that in the
of white noise. This is different from the role ofr which
makes the surface less rough. Whenr.0, the fixed point
U0s*

2 crosses over into the fixed pointUrs*
254d(22d12r

12s)/3(42d13r12s)22r, which is stable for d,2
12r12s. At this fixed point, the dynamic and the roug
ness exponents are obtained from Eqs.~4! and ~10! with z
1a542r as

a5~22d2r12s!/3, z5~101d22r22s!/3.
~15!

When d,22r12s, the surface is rough with a positiv
roughness exponent, while ifd.22r12s, it is smooth
with a negative one. This is the same as that of Eq.~14! if
d→d12s. Whenr,0, the fixed pointUrs*

2 becomes irrel-
evant and the fixed pointU0s*

2 is relevant, except forl050.
Note that in Eqs.~13!, ~14!, and ~15! both the correlated
noise and the long-range interaction of the CKPZ nonline
ity decrease the value of the dynamical exponent.

In plane (U00,U0s), the behavior of the RG flows is th
same as the one for the CKPZ equation with spatially co
lated noise studied by Familyet al. @13#. The fixed point
U00*

2 is stable only ats50. Fors.0, it crosses over into the
correlated fixed pointU0s*

2 , which is stable ford,212s.
At this correlated fixed point, the exponents are given by
~14! which is valid if s.0. This is different from the case o
correlated noise in the KPZ equation where a transition fr
uncorrelated to correlated behavior occurs at a finitesc .

In plane (Ur0 ,Urs), for s50 the surface is governed b
the fixed pointUr0*

2. If s.0, the fixed pointUr0*
2 becomes

unstable and it crosses over into the fixed pointUrs*
2 . This

fixed point is stable ford,d12r12s, even thoughr,0.
At this fixed point the exponent is given by Eq.~15!.
. A
es:
se
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We have also studied Eq.~1! with spatially correlated
nonconservative noise instead of a spatially correlated c
servative one. In the NCKPZ equation with spatially corr
lated nonconservative noise, the average height is not c
served @13#. In the spatially correlated nonconservativ
noise, formD(k) in Eq. ~3! can be written asD(k)5D0
1Dsk22s. There are four sets of axial fixed points and t
results of the spatially correlated nonconservative case
the same as those of the spatially correlated conserva
case if the dimensionality is replaced byd→d22 in Eqs.
~7!–~10! and symbol is replaced by

~• !5
1

4d
$~d26!@~U00

2 1U0s
2 !1~1122r!~U00Ur0

1U0sUrs!122r~Ur0
2 1Urs

2 !#23r@~U00Ur0

1U0sUrs!122r~Ur0
2 1Urs

2 !#22s@U0s
2

1~1122r!U0sUrs122rUrs
2 #%. ~16!

As the case of the spatially correlated conservative noise
any finite r and s, the correlated fixed points are stable
d,dc .

In conclusion, we have studied the nonlocal conserv
KPZ equation with spatially correlated conservative no
and nonconservative noise by using the dynamic RG
proach. In both cases, the long-ranged nature of interact
coupled with spatially correlated noise produces new fix
points at which we obtained the roughness and the dyna
exponents as a function of the parameter of long-range in
actionsr, spatial correlation parameters, and the dimen-
sionality d. The nonlocallr term with positiver makes the
surface less rough than in the case oflr50, while the spatial
correlation of noise makes it more rough.
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